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Madelung constants and lattice sums for hexagonal crystals 

I J Zucker 
Wheatstone Physics Laboratory, King’s College, Strand, London WCZR ZLS, UK 

Received 17 September 1990 

Abstract. A method is given for the  rapid evaluation of the Madelung constants for ionic 
compounds having hexagonal S I ~ U C ~ U T ~ S .  

1. Introduction 

In two previous communications (Zucker 1975, 1976), henceforth referred to as I and 
11, a systematic way of determining the Madelung constants, a, of cubic lattices was 
described. The method employed was to systematize Hund’s (1935) basic potential 
approach, and to represent these potentials as Mellin transforms of &functions. A full 
description of this process has been given by Glasser and Zucker (l980), hereafter 
referred to as 111. The purpose of this paper is to extend the method to crystals having 
hexagonal structures. 

2. Basic hexagonal potentials 

Just as in I where complex cubic structures were decomposed into interpenetrating 
simple cubic lattices, so hexagonal structures can he  represented by interpenetrating 
orthorhombic lattices (0). Thus a simple hexagonal lattice ( H )  is formed by stacking 
planes of two-dimensional equilateral triangular lattices directly above each other. The 
direction of stacking is known as the c-axis and the separation of planes in terms of 
the nearest-neighbour distance, R, of the triangular lattice is known as the axial ratio, 
c. Any two-dimensional equilateral triangular lattice may be considered as being made 
up of two interpenetrating rectangular lattices of sides R and &R. So the hexagonal 
lattice itself can he considered as being made up of two interpenetrating orthorhombic 
lattices, each lattice having orthogonal basic vectors of length R,  &R and cR. A 
hexagonal close-packed structure (HCP)  is made up of two interpenetrating hexagonal 
lattices which is thus four interpenetrating orthorhombic lattices. Hence, just as basic 
cubic Hund potentials were evaluated in I and I I ,  so here we shall evaluate basic 
orthorhombic potentials. The situation is more complex than in the cubic case since 
the lattice points of an orthorhombic lattice from a fundamental origin are given by 
mi+J3n j+epk ,  where m, n a n d p  are integers, and not simply m i + n j + p k  as for cubic 
lattices. 

As in I any lattice site may be taken as a fundamental origin (0, 0,O). The particle 
on this site will interact with particles on various o sites whose origin with respect to 
(0, 0,O) has coordinates (x, y, z) where x, y, z C f. Such a lattice is said to be based on 
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(x, y, z )  and is designated o(x, y ,  z ) .  If the particles interact with an r - I  potential, the 
generalized Hund potential, o(x, y,  z :  2 s )  is defined as the lattice sum obtained by 
summing the interaction of the fundamental origin particle with the particles on the 
o lattice based on (x, y ,  z). Thus 

m 

o:= o(x, y ,  z) =o(x, y ,  z :  2s) = 1 x 1 [ ( m  -x)'+3(n - ~ ) ~ + e ' ( p  -z )~] - ' .  (2.1) 

ine  sums are over aii inieger vaiues of m, n, p. via, 0.0) is known as ihe self-potentiai 
and in its evaluation the interaction of the origin particle with itself is excluded, i.e. 
in (2.1) we omit the term when m, n, p are simultaneously zero. As in the cubic case 
it  may be seen from (2.1) that o is unaltered when x, y, z are replaced by 1 -x, 1 -y,  
1 -: respectively, or displaced by any integer. 

m.n,p=-m 

-. 

As in I the Mellin transform M, is defined as 

r ( s ) M , [ f ] =  Icy f'-'fdf (2.2) 

1 
and it immediately follows that 

q = e-'. (2.3) O(X, y, z :  2 s )  = My(  q1m-r'2 2 q 

For hexagonal structures x and y usually take values of i ,  f or  i, while z will often 
be multiples of &. Apart from when z is an odd multiple of &, all the sums in (2.3) 
may be expressed in terms of Jacobian &functions plus a further function, Os.  These 
are 

4 m m 
Xn-.,.)' 1 qc21p-1 )2  _- - -- 

~ -ca - 

m m " ( 2 n - l i 2 ) '  Ob= 1 (-l)"q"> os= 1 ( - 1 )  4 
-m -m 

Hence all the OS considered here except those for which z is an odd multiple of & 
may be expressed in terms of &functions.' 

As a model example of how to calculate a typical o a detailed description of how 
o(f,f,O) is evaluated is now given. It is easily shown that 

o(i, '2,O) = M,(~202(q')@dqC2)).  (2.4) 

By using the Poisson transformation formula as described in 111, this can be written as 

M, ( .9,0,(q')0,(qC2)) = KM,/ , - ,  ( 88,(q1/') fJdq"'")) (2.5) 

where 

r ( 3 1 2 - ~ )  712,--3/2 

K =  
i-(s)c& 

Since to evaluate Madelung constants we require the value of o when s =f  we have 

( 2 . 6 )  o($, f ,  0: 1) = ( 7 i ~ J " " M , ( 8 ~ 8 ~ ( q ' / ' ) O ~ ( q ' ~ ' ' ~ ) ) .  

This transformation when written out in full is 
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The ‘ in the R H S  of (2.7) excludes the term when m, n and p are simultaneously zero. 
It should be pointed out that the LHS of (2.7) does not converge, but the RHS provides 
an analytic continuation of the LHS as described in 11. For the purposes of calculation 
the RHS of (2.7) is very slowly convergent, but by making use of the identity 

(2.8) 
T cosech(nb) 

b 

m 

( - l )“(m2+b2)-’= 
-m 

the RHS of ( 2 . i )  becomes 

& (-1)” ~ o s e c h [ n ( 3 n ~ + 3 p ~ / c ~ ) ” ~ ]  
-1 c -m-m z (3n2+ 3p2lc’)’” 

The cosech sums are very rapidly convergent and for any given value of c (2.9) may 
be quickly evaluated. Similar processes are applied to evaluate all the or given in the 
tables. When z is an odd multiple of + further 8-type functions and their Poisson 
transforms other than those given above are used (Zucker 1990). Together with the 
more general summation formula 

(2.10) (-1)” w sinh( r b /  k )  cos( n// k) z - , ( k ~ + 1 ) ~ +  b2-kb cosh2(nb/k)-cos2(m//k) 

of which (2.8) is a special case obtained when k = I ,  and /=O, all the or were evaluated. 
Calculations are carried out for two values of c, namely @ and 2. The former value 

is called the ideal ratio, and the orthorhombic potentials for such c will be designated 
01. Those for c = 2  are shown as oz. Simple hexagonal potentials are obtained by 
adding two orthorhombic potentials in which both x and y have been displaced by i, 
i.e. 

H(  X, .V, 2 )  = O( X, y, 2 )  + O( X 4 t , J J  + 4, 2 ) .  

HCP(X, y, 2 )  = H (X, JJ, 2 )  + H (  X + $, y + i, 2 f 4). 

(2.11) 

(2.12) 

Similarly we can evaluate HCP potentials as 

We have evaluated all the OS required to give the potentials given by Hund (1935). He 
designates simple hexagonal potentials with ideal axial ratio as 4, and those with c = 2 
as x. However, Hund does not consider the simple hexagonal lattice as two inter- 
penetrating orthorhombic lattices, but rather as a single lattice based on the oblique 
axes which generate the two-dimensional triangular planes plus the c-axis. The relation. 
ship between Hund’s notation and ours is thus  

!! ! (x, y, z!  = + ( x  + 2y, y, z )  U?( I, y, z )  = ,y$+ 2y, y, z ! .  

The results have been displayed in tables 1 and 2. 
It should be noted here that Hund (1925,1935) carried out all his calculations 

using the classical Ewald (1921) method. This has been described in many places, for 
example in 111, and has been the most widely used way of evaluating Madelung 
constants. Hund’s calculations were carried out in the pre-computer age and were of 
low accuracy. Though the Ewaid approach may be used to evaluate lattice sums with 
high accuracy using computing facilities now available, the speed of computation is 
much slower than that of the methods described here. The evaluation of sums such as 
(2.9) may be carried out very rapidly even on a hand calculator. Also, Madelung sums 
are i n  general conditionally convergent, and it has been shown by Borwein eta/  (1985) 
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Table I .  Potentials for ideal ratio struciures 

ix. Y. 21 ol(x,,v, 1)  HI(X,,V,Z] H C P I i S y ,  I) 

-1.810 788 568 
! 2 .2 .  ' 0  -0.427 933 559 

-0.411 075 032 ~~~ 1 1 ,  
1. e. i 

O ! I  , 3 2 2  -0.592 061 457 

-2.238 722 127 
0.0.0 

-3.241 858 615 
-1.003 136489 

0.0, ?8 
I ,  I ,  16 

I .  6. T6 

1.463 029 5 12 
-0.51s 347 818 
-0.189965 740 

0.451 006471 

0.947 681 694 l l i  

I I I, 0.306 709 483 
-0.640 972 21 1 o i l ?  

.1, 10 

0, 0, i 
/ I ,  
2.2.4 
~~~ , I ,  
2.6.1 

0 2 2  .,. 4 

0.663 007 203 
-0 567 940 485 
-0.033 148 156 
-0.353 375 784 

0.095 066 7 I8 
-0.291 457 223 

-0.386 523 941 

0.0, a -0.063 832 645 
-0.662 091 054 

0.309 974 907 
-0.145 642 830 

-0.725 923 698 I , ,  *. 21 1 
~~~ , , I  
2 . 0 %  " 
0 2 1  3 33 8 

~ _ .  
-0.561 591 621 

0.164 332077 

0.0, f -0.254929 338 
-0.699 992 I12 

0478496161 
-0.046 144 166 

-0.954921 450 I , ,  
I i  23 2 
~ . .  

-0.522 569 455 
~~ ;. ;. 0 

0.432 351 995 
0. +> 0 

0 1 1  . e .  I6 

I . 7 ,  m 
~~~ $ 2 7  
2 .13  I 6  

0 1 1  3 6. >6  

1.447 296 870 
-0.202 973 683 
-0.593 471 399 
-0.340 876 881 

1.244323 187 l i  I 

0.309 974 907 
-0.934 348 280 

0.204 770 760 
-0.410308 276 
-0.527 398 285 
-0.310 537 205 

0 1 1  
, a 1 <  

~~~ 1 2 1  
2 . 3 . 4  

-0.205 537 516 

. 1, I -0.837 935 490 I 1 3  *. 6. * ~ . .  

that certain methods of summation d o  not actually converge. Typically, the Ewald 
method avoids the technical difficulties attendant on this fact by rendering the sums 
involved absolutely convergent by the inclusion of a convergence factor which is an 
added complication. Again Borwein er a! note that defining Madelung sums by Mellin 
transforms of &functions avoids all ambiguities, and that analytic continuation pro- 
vides a unique result for such lattice sums. 

In I several relations amongst the cubic potentials were discovered using various 
identities which exist between the &functions. Undoubtedly relations exist amongst 
the o such as 

H ( 0 ,  f , i) = 3 H ( o ,  f , 9) + H ( 0 ,  f , a) (2.13) 

but here these have not been investigated as fully as was done in the cubic case 
considered in I. 
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Table 2. Potentials for c = 2 .  

877 

-1.596909 816 
-0.198 107 679 

0.335 718 524 
-0.469 471 797 
-0.489 404 337 
-0.711 290 122 

0.069 393 760 
-0.348 265 388 

0.179645 660 
0.696 530 776 
0.013 386 840 
0.428 995 199 

-0.309 996 217 
-0.066 804 790 
-0.563988 121 

-0.431 581 563 
-0.655 672 635 
-0.557 743 256 

-1.795017494 

-0.133 759 273 

-1.200 694 459 

-0.278 871 629 

0.876 176 436 

0.442 382 039 

-0.376 801 007 

-0.995 569 684 

-1.213 415 891 

3. Evaluation of some Madelung constants 

To find a for a given crystal the total Hund potential of every ion making up the 
neutral complex in the crystal must be evaluated, taking into account both the number 
and sign of the charges on the ions. Half the sum of the Hund potentials then gives 
a. Two examples are now illustrated. Zinc sulphide (ZnS) occurs as two crystalline 
forms. One of these, the zinc blende structure, is made up of interpenetrating cubic 
lattices and has been treated by many authors. The other form is the wurzite structure 
which consists of two interpenetrating HCPI  structures. If we take the Zn'+ as based 
o n  HCPI(O, 0,O) then the S2- is based on HCPI(O, 0, i). Thus 

POT(Zn2+) = 4 H C P I ( O ,  0, 0) -4HCPI(O, 0, a) 
P O T ( S 2 - ) = 4 H C P I ( 0 , 0 ,  0 ) - 4 H C P I ( O , 0 , 8 ) .  

Thus a(wurzite) =f[POT(Zn2+)+P0T(S2-)] = ~ [ H c P I ( ~ , O , O ) - H C P I ( O , O , ~ ) ] .  From 
table 1 this gives a(wurzite) = 10.721 067 98 in terms of R. In terms of the nearest 
anion-cation distance, 0, this has to be  multiplied by 4 giving 6.565 286 512. However, 
when Hund (1925) first evaluated a(wurzite) along with other simple A B  structures 
in which A obviously has the same number of positive charges, Z, as B has negative 
charges, he gave the value of a in terms of Z 2 .  It has thus become common in the 
literature to give 01 in this case as the values given above divided by four, since Z for 
ZnS is two. Thus in terms of D, a(wurzite) = 1.641 321 6 2 7 . .  . , which agrees with the 
only other value calculated to this accuracy (Sakamoto 1958). The actual details of 
Sakamoto's calculation are unpublished. 

As a second example cadmium iodide, CdI,, will be discussed. CdI, may be 
considered as interpenetrating simple hexagonal lattices with Cd'+ based on H I ( O ,  0,O) 
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Table 3. Madelung constants of some hexagonal structures 

Wurzite 4 2.680 266 994 1.641 321627 
NiAs type 4 4.889406 510 3.457 332 500 
BN type 4 2.646 966 603 1.528 226880 
Ice type 4 7.270 377 298 2.226 089 327 
Cdl, 4 6.173 207 106 4.365 116607 

with I; on  HI(-^,$, y )  and I;, on ~ i ( O , f ,  - y ) .  Thus 

POT(Cd2+)=4Hl(0, 0,0)-2H1(0, f, y)-2H1(0,f, y )  

POT(I;)=Hl(O, o,O)+HI(O,f, 27)  -2H1(0,f, y )  

POT(I,)= H I ( O , o ,  O)+HI(O, f ,  27) -2HI(O,f, y )  

Hence 

a(CdI,) =f[POT(Cd’+) + POTU;)+ POT( I;)] 

=3HI(O,O,O)+HI(O,f,2y)- 4HI(O,f, y )  

Hund (1925) has evaluated these potentials for several values of y and for several 
values of c. The value usually required is for y = a and c equal to the ideal ratio. Hund 
(1925) gives this value as 4.71 (in terms of D which is R I J 2 )  and this is the value 
often quoted in the literature, e.g. Sherman (l932), Hoppe (1956) and Waddington 
(1959). However, this is incorrect, since if we calculate a(CdI,) using the potential 
values given in Hund’s (1925) own tables the value found is 4.40. All the other values 
of a given by Hund for varying y and c are correct and it is strange that this one error 
has perpetuated itself in much published work. Using the more accurate values found 
here a(CdI,) = 4.365 116 607. Johnson and Templeton (1961) give the value a(CdI,) = 
4.38409 which has been calculated for a c-value of 1.617 which is slightly different 
from the ideal ratio of G= 1.633. In table 3 a few accurate values for a of some 
hexagonal structures have been listed. (A  full description of all these structures together 
with relevant diagrams may be found in Megaw (1973).) The a-values have been given 
both in terms of D and in terms of R. It seems apposite here to correct a small numerical 
error appearing in a paper by Borwein et a1 (1988) concerning the energy of static 
electron lattices. The results for the HCP structure were evaluated by the methods used 
here and a slight error was made. In that paper a result given as 

U ( ~ ~ ~ ) = - 3 . 2 4 1  858662e2/R=-l.791 676267e2/r, 

should read 

U(HCP) = -3.241 858 615 e2/R = -1.791 676 241 e2/r, 

The conclusions of that paper are unaffected 
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